Edexcel Physics A-level Topic 6: Further Mechanics

Key Points

㞘PMT Impulse

By combining the equations for momentum with Newton's Second Law, we can produce a definition for impulse:

$$
\begin{gathered}
F=m a \\
F=\frac{\Delta(m v)}{\Delta t}
\end{gathered}
$$

$$
F \Delta t=\Delta(m v)
$$

Impulse can therefore be described as the change of momentum of an object. It is equal to the area under a Force-Time graph.
Another useful thing that these equations demonstrate is that the force an object experiences is equal to the rate of change of momentum - an idea used in vehicle safety.

Collisions

For all collisions, the conservation of momentum must apply. Whether or not the kinetic energy of the system is conserved depends on the type of collision:

- In elastic collisions, the kinetic energy of the system is conserved and so:

$$
E_{k} \text { final }=E_{k} \text { initial }
$$

- In inelastic collisions, the kinetic energy of the system is not conserved and the energy is dissipated in other forms - to work out the quantity of energy transferred to other forms you can compare the initial and final KE values:

$$
\Delta E_{k}=E_{k} \text { final }-E_{k} \text { initial }
$$

Radian Measures

When dealing with circular motion, it is often easier to make use of angular quantities. These make use of an angle unit known as the radian. The conversion between degrees and radians is:

$$
2 \pi \text { radians }=360^{\circ}
$$

The equation to find the angular displacement (日), which is the angle you have turned through in radians, is:

$$
\theta=\frac{s}{r} \quad \begin{aligned}
& \text { Where ' } s \text { ' is arc length and } \\
& \text { ' } r \text { ' is the radius of the circle. }
\end{aligned}
$$

Angular velocity (ω) is the angle an object moves through per unit time. It is given by:

$$
\omega=\frac{v}{r} \quad \omega=\frac{2 \pi}{\mathrm{~T}}
$$

Circular Motion

From Newton's first law, we know that for an object to change velocity, a resultant
force must act. In circular motion, since the direction of the object is continually changing, the velocity must also be changing. Therefore a resultant centripetal force is required. This force points towards the centre of the object's orbit and is given by the equation:

$$
F=\frac{m v^{2}}{r}
$$

An alternative form of this equation can be given, which makes use of the object's angular speed.

$$
F=m \omega^{2} r
$$

$$
\text { Where } \omega \text { is the angular speed and is given by: } \quad \omega=2 \pi f
$$

Circular Motion

It is important to consider what is contributing to the centripetal force at each point in the cycle. For a ball being spun on a string:

- At position \mathbf{A}, the weight of the ball is directly contributing to the centripetal force since it is acting directly towards the centre of the circle - this means that the inwards force (tension) provided by the string is at a minimum
- At position B, the weight of the ball is acting perpendicular to the direction of the centripetal force, meaning it makes no contribution and the string provides the full force
- At position \mathbf{C}, the weight of the ball is acting opposite to the direction of the centripetal force, meaning the inwards force of the string must overcome the weight and provide the required centripetal force - this means the tension is at a maximum

家PMT
 Kinetic Energy

You can derive an equation for the kinetic energy of a non-relativistic particle (one travelling below relativistic speeds) involving momentum (p) as shown below:

$$
\begin{gathered}
E_{k}=1 / 2 m v^{2} \\
p=m v \\
v=\frac{p}{m} \\
E_{k}=1 / 2 m \frac{p^{2}}{m^{2}} \\
E_{k}=\frac{p^{2}}{2 m}
\end{gathered}
$$

Centripetal Acceleration

The equation for centripetal acceleration can be derived using vector diagrams as shown below:

1. Consider an object moving at a constant speed v, in a circular path of radius r.
2. Using the diagram below, you can see that the triangles formed as part of the circular path and by the velocity vectors, are similar isosceles triangles. This is because they both have 2 sides of equal length (r/v) and it can be shown using circle theorems and the fact the angles in a triangle add up to 180°, that the angle between these equal sides is the same.
3. As these triangles are similar, we can write:

$$
\frac{\Delta v}{v}=\frac{\Delta s}{r}
$$

4. Rearrange to get Δv as the subject.

$$
\Delta v=\frac{v}{r} \times \Delta s
$$

5. Divide through by Δt as $a=\Delta v / \Delta t$. Note that $v=\Delta s / \Delta t$.

$$
\frac{\Delta v}{\Delta t}=\frac{v}{r} \times \frac{\Delta s}{\Delta t} \quad a=\frac{v}{r} \times v \quad a=\frac{v^{2}}{r}=r \omega^{2}
$$

$$
\text { As } v=\omega r
$$

Image source: OpenStax College, CC BY 4.0

